
The one-dimensional Edwards model for long polymer chains

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 L1159

(http://iopscience.iop.org/0305-4470/22/24/005)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 07:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) L1159-L1161. Printed in the U K  

LElTER TO THE EDITOR 

The one-dimensional Edwards model for long polymer chains 

J Pasche 
institut de Physique Thkorique, UniversitC de Lausanne, 1015 Lausanne, Switzerland 

Received 18 September 1989 

Abstract. Using the theory of dynamical systems, we investigate the T +  CO and g + 0 limits 
of Edwards’ probability measure. We prove that there exists at least one limit measure 
and that this measure is the Wiener measure. 

Edwards’ model is characterised by a probability measure that differs from the Wiener 
measure by the presence of a suppressing factor exp( - g N ( w ,  T ) ) ,  where g is a repulsive 
constant and N ( w ,  T) is the number of self-intersections of the path w. w is defined 
on the interval [0, TI and is a subset of Rd with d 3 1. Edwards’ model is well known 
in polymer physics (see [ l ]  and references therein). It is equally interesting because 
it is related to both ordinary random paths (if g + 0) and self-avoiding paths (if g + 00) 

(see [2] and references therein). It is slightly more difficult than the model of ordinary 
paths but much easier than that of self-avoiding paths. It should be possible to construct 
the self-avoiding model by taking the g+co limit of Edwards’ model. There are, 
however, only a few mathematical results obtained for it (but see [3,4]). In particular 
the g + CO and g + 0 limits, as well as the T + CO limit, have not been proven yet. We 
study here the one-dimensional model and present a new approach based on the notion 
of the dynamical system. This approach is very simple and enables us to prove the 
existence of at least one T + m  limit, obtained by letting g go to zero as T goes to 
infinity. Furthermore, it should be possible to use the same technique for the treatment 
of the two-dimensional Edwards model, which is more difficult because of the diver- 
gence of N ( w ,  T ) .  

We define on Wiener space R = C([O, TI, R), with 0 < T < 00, a probability measure 
of the form: 

dp(w)  = 2-’ exp(-gN(w, T ) )  dv(w) (1) 
where g is a positive constant, 2 is the normalisation constant and dv  denotes the 
Wiener measure. N ( w ,  T) represents the number of self-intersections of the Brownian 
path w, and is defined as 

N (  U, T )  = jOr Ior ds d t 6[ w ( t )  - w ( s ) ]  (2) 

where 6 denotes the Dirac measure at the origin. Notice that N ( w ,  T )  is divergent if 
d is greater than one. If d = 2 it is, however, possible to give it a sense by renormalisation 

Let G( t )  = y - ’ w (  y ’ t ) .  This defines on Wiener space R a map S, which preserves 
the Wiener measure v (this means that v(S , ’ (  C)) = v( C) for every cylinder C). A 

(see [51). 
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natural question that arises is: what happens to Edwards’ measure? First regularise 
the expression for N ( w ,  T )  

N ( w ,  T )  = (27r-I IoJ IoJds  dt  I, du exp(iu(w(r)-w(s)) ( 3 )  

which becomes 

N A ( W ,  T )  = (27r-I JOr JoJds d t  J, du exp(iu(w(t)-w(s)-Au2/2) 

with A 20. Therefore, 

(4) 

A straightforward computation of PiA(&, T )  leads to the relation 

Now, using a change of variables theorem, we obtain: 
NA(&, T ) =  y - 3 N , + y 2 ( W ,  y 2 T ) .  ( 6 )  

pg,T(Sy’( C 1) = P , > g . r /  ,l( C )  (7)  
for every cylinder C and thus for every Borel set A (from now on we write down p 
with its two parameters g and T ) .  

This means that Edwards’ measure is not invariant. One can say it is ‘covariant’ 
with respect to S ,  in the sense that the image measure of pg,T under S ,  is still a measure 
of Edwards type but with new parameters g’ = y3g and T’ = T /  y 2 .  

Remark. If A = R then the above formula implies that 

z ( y )  = i, exp(-g/y’N(w, y * T ) )  = exp(-gN(w, T ) )  = z. I, (8) 

The normalisation factor is thus independent of y. 

Formula ( 7 )  suggests that we allow g go to zero as T goes to infinity so as to use 
the covariance of the measure. In other words, starting from a given pg,, ,Jo we follow, 
in the (g, T )  plane, the hyperbola defined by g2l3T = gZl3 To. This T +  0;) limit can be 
viewed as an infinite-volume g + 0 limit. 

We now consider the dynamical system canonically associated with Wiener space 
R. We define S = { S , ,  t 2 0) by 

We recover S ,  by putting y=exp(-t/2). S preserves v and is exact [6]; this means 
that if v ( A )  > 0 then lim,+m v(S,(A))  = 1 for every Borel set A. Notice that exactness 
implies ergodicity [ 6 ] .  

We associate with S the semigroup of Frobenius-Perron operators P = {P,, t 2 0) 
defined by the relation 

S,w ( U )  = exp( t / 2 ) o  (exp( - ?)U). (9) 

Then (7) and (10) imply that 
P, exp(-gN(w, T ) )  = e x p ( - y 3 g ~ ( w ,  ~ / y ’ ) )  as .  (11) 

where t = -2 In y. The limit T + 0;) corresponds now to the limit y -j 0 which, in turn, 
is related to the t -j 0;) limit of the semigroup P. 
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Remark t is a continuous variable, but we can imagine that t takes only rational 
values, which is not a restriction at all. 

One can show that P is asymptotically stable [ 5 ] .  Otherwise stated, there exists a 

(i) jii p dv = 1 and P , p  = p for every f 3 0 
(ii) lim,+m P , f = p  in L'(dv) i f f  is positive and j n f d v =  1. 

positive function p such that: 

Thus, by (ii), 

exists in L'(dv). Now the invariance of the Wiener measure and ergodicity imply that 
p = l !  This means that 2-' exp(-gN(w, T)) converges in L' to 1 when T goes to 
infinity and g to zero, provided that g and T are related as (1 1). So the limit measure 
obtained above is just the Wiener measure! This is not surprising if, as explained 
before, this limit is interpreted as an infinite-volume g + 0 limit. Notice, however, that 
this result does not exclude convergence to other limits if g+O and T+oo following 
different routes in the (g, T )  plane. 

In two dimensions the problem is much more complicated because of the divergence 
of N ( w ,  T). It is necessary to renormalise N ( w ,  T) and to change the parametrisation 
y. The treatment of the two-dimensional Edwards model is the object of a forthcoming 
paper. 

It is a pleasure to thank Dimitri Petritis for his interest in this work and some relevant 
remarks. 
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