The one-dimensional Edwards model for long polymer chains

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22 L1159
(http://iopscience.iop.org/0305-4470/22/24/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 07:45

Please note that terms and conditions apply.

## LETTER TO THE EDITOR

# The one-dimensional Edwards model for long polymer chains 

J Pasche<br>Institut de Physique Théorique, Université de Lausanne, 1015 Lausanne, Switzerland

Received 18 September 1989


#### Abstract

Using the theory of dynamical systems, we investigate the $T \rightarrow \infty$ and $g \rightarrow 0$ limits of Edwards' probability measure. We prove that there exists at least one limit measure and that this measure is the Wiener measure.


Edwards' model is characterised by a probability measure that differs from the Wiener measure by the presence of a suppressing factor $\exp (-g N(\omega, T))$, where $g$ is a repulsive constant and $N(\omega, T)$ is the number of self-intersections of the path $\omega . \omega$ is defined on the interval $[0, T]$ and is a subset of $\mathbb{R}^{d}$ with $d \geqslant 1$. Edwards' model is well known in polymer physics (see [1] and references therein). It is equally interesting because it is related to both ordinary random paths (if $g \rightarrow 0$ ) and self-avoiding paths (if $g \rightarrow \infty$ ) (see [2] and references therein). It is slightly more difficult than the model of ordinary paths but much easier than that of self-avoiding paths. It should be possible to construct the self-avoiding model by taking the $g \rightarrow \infty$ limit of Edwards' model. There are, however, only a few mathematical results obtained for it (but see [3, 4]). In particular the $g \rightarrow \infty$ and $g \rightarrow 0$ limits, as well as the $T \rightarrow \infty$ limit, have not been proven yet. We study here the one-dimensional model and present a new approach based on the notion of the dynamical system. This approach is very simple and enables us to prove the existence of at least one $T \rightarrow \infty$ limit, obtained by letting $g$ go to zero as $T$ goes to infinity. Furthermore, it should be possible to use the same technique for the treatment of the two-dimensional Edwards model, which is more difficult because of the divergence of $N(\omega, T)$.

We define on Wiener space $\Omega=C([0, T], \mathbb{R})$, with $0<T<\infty$, a probability measure of the form:

$$
\begin{equation*}
\mathrm{d} \mu(\omega)=Z^{-1} \exp (-g N(\omega, T)) \mathrm{d} \nu(\omega) \tag{1}
\end{equation*}
$$

where $g$ is a positive constant, $Z$ is the normalisation constant and $\mathrm{d} \nu$ denotes the Wiener measure. $N(\omega, T)$ represents the number of self-intersections of the Brownian path $\omega$, and is defined as

$$
\begin{equation*}
N(\omega, T)=\int_{0}^{T} \int_{0}^{T} \mathrm{~d} s \mathrm{~d} t \delta[\omega(t)-\omega(s)] \tag{2}
\end{equation*}
$$

where $\delta$ denotes the Dirac measure at the origin. Notice that $N(\omega, T)$ is divergent if $d$ is greater than one. If $d=2$ it is, however, possible to give it a sense by renormalisation (see [5]).

Let $\tilde{\omega}(t)=\gamma^{-1} \omega\left(\gamma^{2} t\right)$. This defines on Wiener space $\Omega$ a map $S_{\gamma}$ which preserves the Wiener measure $\nu$ (this means that $\nu\left(S_{\gamma}^{-1}(C)\right)=\nu(C)$ for every cylinder $C$ ). A
natural question that arises is: what happens to Edwards' measure? First regularise the expression for $N(\omega, T)$

$$
\begin{equation*}
N(\omega, T)=(2 \pi)^{-1} \int_{0}^{T} \int_{0}^{T} \mathrm{~d} s \mathrm{~d} t \int_{R} \mathrm{~d} u \exp (\mathrm{i} u(\omega(t)-\omega(s)) \tag{3}
\end{equation*}
$$

which becomes

$$
\begin{equation*}
N_{\lambda}(\omega, T)=(2 \pi)^{-1} \int_{0}^{T} \int_{0}^{T} \mathrm{~d} s \mathrm{~d} t \int_{R} \mathrm{~d} u \exp \left(\mathrm{i} u\left(\omega(t)-\omega(s)-\lambda u^{2} / 2\right)\right) \tag{4}
\end{equation*}
$$

with $\lambda \geqslant 0$. Therefore,

$$
\begin{equation*}
N_{\lambda}(\omega, T)=(2 \pi \lambda)^{-1 / 2} \int_{0}^{T} \int_{0}^{T} \mathrm{~d} s \mathrm{~d} t \exp \left(-\frac{(\omega(s)-\omega(t))^{2}}{2 \lambda}\right) . \tag{5}
\end{equation*}
$$

A straightforward computation of $N_{\lambda}(\tilde{\omega}, T)$ leads to the relation

$$
\begin{equation*}
N_{\lambda}(\tilde{\omega}, T)=\gamma^{-3} N_{\lambda \gamma^{2}}\left(\omega, \gamma^{2} T\right) \tag{6}
\end{equation*}
$$

Now, using a change of variables theorem, we obtain:

$$
\begin{equation*}
\mu_{g, T}\left(S_{\gamma}^{-1}(C)\right)=\mu_{\gamma^{3}, T / \gamma^{2}}(C) \tag{7}
\end{equation*}
$$

for every cylinder $C$ and thus for every Borel set $A$ (from now on we write down $\mu$ with its two parameters $g$ and $T$ ).

This means that Edwards' measure is not invariant. One can say it is 'covariant' with respect to $S_{\gamma}$ in the sense that the image measure of $\mu_{g, T}$ under $S_{\gamma}$ is still a measure of Edwards type but with new parameters $g^{\prime}=\gamma^{3} g$ and $T^{\prime}=T / \gamma^{2}$.

Remark. If $A=\Omega$ then the above formula implies that

$$
\begin{equation*}
Z(\gamma) \equiv \int_{\Omega} \exp \left(-g / \gamma^{3} N\left(\omega, \gamma^{2} T\right)\right)=\int_{\Omega} \exp (-g N(\omega, T)) \equiv Z . \tag{8}
\end{equation*}
$$

The normalisation factor is thus independent of $\gamma$.
Formula (7) suggests that we allow $g$ go to zero as $T$ goes to infinity so as to use the covariance of the measure. In other words, starting from a given $\mu_{g_{01}, T_{0}}$ we follow, in the ( $g, T$ ) plane, the hyperbola defined by $g^{2 / 3} T=g_{0}^{2 / 3} T_{0}$. This $T \rightarrow \infty$ limit can be viewed as an infinite-volume $g \rightarrow 0$ limit.

We now consider the dynamical system canonically associated with Wiener space $\Omega$. We define $S=\left\{S_{1}, t \geqslant 0\right\}$ by

$$
\begin{equation*}
S_{1} \omega(u)=\exp (t / 2) \omega(\exp (-t) u) \tag{9}
\end{equation*}
$$

We recover $S_{\gamma}$ by putting $\gamma=\exp (-t / 2) . S$ preserves $\nu$ and is exact [6]; this means that if $\nu(A)>0$ then $\lim _{t \rightarrow \infty} \nu\left(S_{l}(A)\right)=1$ for every Borel set $A$. Notice that exactness implies ergodicity [6].

We associate with $S$ the semigroup of Frobenius-Perron operators $P=\left\{P_{t}, t \geqslant 0\right\}$ defined by the relation

$$
\begin{equation*}
\int_{A} P_{t} f(\omega) \nu(\mathrm{d} \omega)=\int_{S_{i}^{-1}(A)} f(\omega) \nu(\mathrm{d} \omega) . \tag{10}
\end{equation*}
$$

Then (7) and (10) imply that

$$
\begin{equation*}
P_{t} \exp (-g N(\omega, T))=\exp \left(-\gamma^{3} g N\left(\omega, T / \gamma^{2}\right)\right) \text { a.s. } \tag{11}
\end{equation*}
$$

where $t=-2 \ln \gamma$. The limit $T \rightarrow \infty$ corresponds now to the limit $\gamma \rightarrow 0$ which, in turn, is related to the $t \rightarrow \infty$ limit of the semigroup $P$.

Remark. $t$ is a continuous variable, but we can imagine that $t$ takes only rational values, which is not a restriction at all.

One can show that $P$ is asymptotically stable [5]. Otherwise stated, there exists a positive function $\rho$ such that:
(i) $\int_{\Omega} \rho \mathrm{d} \nu=1$ and $P_{t} \rho=\rho$ for every $t \geqslant 0$
(ii) $\lim _{t \rightarrow \infty} P_{l} f=\rho$ in $L^{1}(\mathrm{~d} \nu)$ if $f$ is positive and $\int_{\Omega} f \mathrm{~d} \nu=1$.

Thus, by (ii),

$$
\begin{equation*}
\rho \equiv \lim _{\gamma \rightarrow 0} \frac{\exp \left(-\gamma^{3} g N\left(\omega, T / \gamma^{2}\right)\right)}{Z(\gamma)} \tag{12}
\end{equation*}
$$

exists in $L^{1}(\mathrm{~d} \nu)$. Now the invariance of the Wiener measure and ergodicity imply that $\rho=1$ ! This means that $Z^{-1} \exp (-g N(\omega, T))$ converges in $L^{1}$ to 1 when $T$ goes to infinity and $g$ to zero, provided that $g$ and $T$ are related as (11). So the limit measure obtained above is just the Wiener measure! This is not surprising if, as explained before, this limit is interpreted as an infinite-volume $g \rightarrow 0$ limit. Notice, however, that this result does not exclude convergence to other limits if $g \rightarrow 0$ and $T \rightarrow \infty$ following different routes in the ( $g, T$ ) plane.

In two dimensions the problem is much more complicated because of the divergence of $N(\omega, T)$. It is necessary to renormalise $N(\omega, T)$ and to change the parametrisation $\gamma$. The treatment of the two-dimensional Edwards model is the object of a forthcoming paper.

It is a pleasure to thank Dimitri Petritis for his interest in this work and some relevant remarks.

## References

[1] des Cloizeaux J and Jannink G 1987 Les polymères en solution: leur modélisation et leur structure (Les Ulis: Editions de Physique)
[2] de Forcrand Ph, Pasche J and Petritis D 1988 J. Phys. A: Math. Gen. 21 3771-82
[3] Kusuoka S 1985 Infinite Dimensional Analysis and Stochastic Processes ed S Albeverio (Research Notes in Mathematics 124) (Boston, MA: Pitman) pp 66-82
[4] Westwater M J Trends and Developments in the Eighties (Bielefeld Encounters in Mathematics and Physics $I V$ and $V$ ) ed S Albeverio and Ph Blanchard (Singapore: World Scientific) pp 384-404
[5] Koukiou F, Pasche J and Petritis D 1989 J. Phys. A: Math. Gen. 22 1385-91
[6] Lasota A and Mackey M 1985 Probabilistic Properties of Deterministic Systems (Cambridge: Cambridge University Press)

